5.7 periodic solutions and Poincare-Bendixson

Wednesday, March 24, 2021 12:07 PM
Recall: A 2D linear autonomous system $\dot{X}(t)=A X(t)$, where $A \in \mathbb{R}^{2 \times 2}$ and the eigenvalues of A are purely imaginary, has a centre at 0 and periodic solutions around it.
e.g. $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

$$
\lambda_{1,2}= \pm i
$$

When does a nonlinear system have periodic solution?
Notation: Consider the 2D autonomous system

$\frac{d x}{d t}=f(x, y) \quad \frac{d y}{d t}=g(x, y)$, where f and g have conttinoug partial derivatives in some region of the plane.

The solution trajectory $\Gamma\left(X_{0}, t\right)$ is a solution to the system where $X_{0}=\left(x_{0}, y_{0}\right)=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$.
$\Gamma^{+}\left(x_{0}, t\right)$ is the positive orbit, the part of $\Gamma\left(x_{0}, t\right)$ where $t \geq t_{0}$ $\Gamma^{-}\left(x_{0}, t\right)$ is the negative orbit , the part of $\Gamma\left(x_{0}, t\right)$, where $t \leq t_{0}$ If solutives are bounded, then they approach limiting sets a $t \rightarrow-\infty$ or $t \rightarrow \infty$
The α-limit set $\alpha\left(X_{0}\right)$ is the set of points approached by Γ^{-}as $t \rightarrow-\infty$, i.e. $\left(x_{e}, y_{e}\right) \in \alpha\left(x_{0}\right)$ iff \exists a decreasing sequence of times $\left\{t_{i}\right\}_{i=1}^{\infty}, t_{i} \rightarrow-\infty$

$$
\text { s.d. } \lim _{i \rightarrow \infty}\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)=\left(x_{l}, y_{e}\right) \text {. }
$$

The $w^{\text {-limit }}$ set $w\left(X_{0}\right)$ is the set of points approached by Γ^{+}as $t \rightarrow+\infty$, i.e. $\left(x_{e}, y_{e}\right) \epsilon_{w}\left(X_{0}\right)$ iff \exists an incriag'ry sequence of tames $\left\{t_{i}\right\}_{i=1}^{\infty}, t_{i} \rightarrow+\infty$

$$
\text { st. } \quad \lim _{-}(v(t:) \quad,(t ;))=(v \quad,)
$$

s.t. $\lim _{i \rightarrow \infty}\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)=\left(x_{l}, y_{e}\right)$.

How do we classify
and understand what
these limiting sets look like?

Tho S.6 (Poincaré-Bendixson)
Let $\Gamma^{+}\left(X_{0}, t\right)$ be a positive orbit that romains in a closed and bounded region of the plane. Suppose $w\left(X_{0}\right)$ does not contain any equilibrial. Then $\omega\left(X_{0}\right)$ is a periodic orbit.
Note: Some $\Gamma^{+}\left(x_{0}, t\right)=\omega\left(x_{0}\right)$, in which case $\Gamma^{+}\left(x_{0}, t\right)$ is periodic.
The 5.7 (Poincaré-Bendixson trichotomy)
Let $\Gamma^{+}\left(X_{0}, t\right)$ be a positive orbit that remains in a closed and bounded region β of the plane. Suppose B contains a finite number of equilibrial, Then either
$(i) \omega\left(X_{0}\right)$ is an equilibrium.
(ii) $\omega\left(X_{0}\right)$ is a periodic solution
(icon) $w\left(X_{0}\right)$ contains a fin, te number of equilibrin and a set P_{i} of trajecturis whose α - and $w^{-l i m i t}$ ser consist of one of these equilibria $\forall \Gamma_{i}$.

Aside: periodic orbit must enclose at least I equilibrium. \rightarrow closed and bounded region

The 5.8 (Bendixson's criteria)
Suppose $D C \mathbb{B}^{2}$ is open and simply connected.
If $\operatorname{div}(f, g) \equiv \frac{\partial f}{\partial v}+\frac{\partial g}{\partial r}$ is not identically 0 , and does not change sign in P,

Suppose $V^{C} \| s$ is open and simply connected,
If $\operatorname{div}(f, g) \equiv \frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}$ is not identically 0 , and does not change sign in P , then there are no periodic orbits of $\frac{d x}{d t}=f(x, y) \frac{d y}{d t}=g(x, y)$ in D.

The 5.9 (Dulac's criterion)
Dulac functor
Suppose $D \subset \mathbb{R}^{2}$ is open and simply connected, and $\widehat{B(x, y)}$ has cantinuans partial derivatives in D.
If $\operatorname{div}\left(B f, B_{g}\right)=\frac{\partial(B f)}{\partial x}+\frac{\partial\left(B_{g}\right)}{\partial y}$ is not identically O, ard does not change sign in D,
then there are no periodic orbits of the system $\dot{x}=f(x, y), \dot{y}=g(x, y)$ in D.
Note: If we let $\mathbb{B}(x, y)=1$, than Dulac's criterion is Bendixson's criterion,
As, de: There is no general technique for finding a Dulac function
(viz integrating factor)

Ex 73.2 [Strogatz, Nonlinear Dynamics and Chaos, Rad Ed).
Cells use glycolysis to obtain energy by breaking by sugar.
Two of the intermcliates are ADP (adenosine diphosphate) and FGP (fructose-6-phosphate) A simplified model of the interactions is

$$
\begin{aligned}
& \dot{x}=-x \operatorname{tay}+x^{2} y \\
& \dot{y}=b-a y-x^{2} y \quad, \quad a, b>0
\end{aligned}
$$

Note: The nullclines divide up the plane is to regions with positive on negative \dot{x} and \dot{y}

$$
\text { Note that } \dot{x}+\dot{y}=-x+a y+x^{2} y+b-a y-x^{2} y
$$

$$
=b-x
$$

Note that $x+\dot{y}=-x+a y+x^{2} y+b-a y-x^{2} y$

$$
=b-x
$$

S. if $x>b$, then $\dot{x}+\dot{y}<0$

$$
\dot{x}<-\dot{y}
$$

Thus, all solutions starting in the green box are trapped within the green boy

Suppose the equilibrium is an unstable node or spiral. Then we can cut out a little open disc aroid it, and solutions are still bounded.
 box minus the orange circle.

Note: This excision only works it the equilibrium is an unstable node or spiral. Does not work if it is stable or a saddle pl.

Ex. 5.17 Consider the following predatur-prey model where both logistically grow in the absence of the other.

$$
\begin{aligned}
& \frac{d x}{d t}=x(1-a x-b y) \\
& \frac{d y}{d t}=y(1+c x-d y), \quad a, b, c, d>0
\end{aligned}
$$

Let $B(x, y)=\frac{1}{x y}$, which is continuously differentiable in $D=\{(x, y) \mid x>0, y>0\}$.

$$
\begin{aligned}
& \operatorname{div}\left(B_{x}(1-a x-b y), B_{y}(1+c x-d y)\right)=\operatorname{div}\left(\frac{1}{y}(1-a x-b y), \frac{1}{x}(1+c x-d y)\right) \\
& =\operatorname{div}\left(\frac{1}{y}-a \cdot \frac{x}{y}-b, \frac{1}{x}+c-d-\frac{y}{x}\right) \\
& =\frac{\partial\left[\frac{1}{y}-a \cdot \frac{x}{y}-b\right]}{\partial x}+\frac{\partial\left[\frac{1}{x}+c \cdot d \cdot \frac{y}{x}\right]}{\partial y}=-\frac{a}{y}-\frac{d}{x}<0 \text { in } D .
\end{aligned}
$$

\Rightarrow By Oulac's criterion, there cannot exist any periotic solutions in D.

